
Numerous calculations have shown that the error of  the solution usually does not exceed me error in specification 
of  the boundary conditions over a wide range of  variation of  the latter. This testifies to the effectiveness of the solution 
method. 
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OPTIMIZATION OF MULTILAYER THERMAL INSULATION 

V. V. Mikhailov UDC 536.2:51.380.115 

An iteration method is developed for determination of  the thicknesses of  layers of  a multilayer thermal 
insulation with minimum mass, with consideration of  temperature limitations. The penalty function 
method is employed. 

Coating of  surfaces by layers of  thermal insulation is a widespread method of  protecting thermally stressed construction 
details from the direct action of  a high-temperature medium. One must then select the most rational variant of insulation, 
i.e., optimize the insulation. Often the mass of  the insulating material can be considered as the optimization criterion. 

We will consider the problem of heating of  a multilayer thermal insulation, consisting of n layers of  various materials 
of thickness hi, i = 1, 2, ..., n. Thermal contact between layers will be assumed ideal: 

C'(T) a r _ a  (z~(r) a_~g) 
at ay 

Y i : l<y<Yi ,  0 < t ~ < t e ,  i = l ,  2 . . . . .  n, 

T(y, O)=q~(y), Y o ~ Y ~ Y . ,  

--).~(T) aT(Yo, t) --qo(t), t>O, 
ay 

(1) 

(2) 

(3) 

_Z,,(T)'aT(Y,, t) - -q , ( t ) ,  t > 0 ,  
09 

T(Y,--O, 0 = T ( Y ~  ,'--0, t), i = 1 ,  2 . . . . .  n - - l ,  t > 0 ,  

~/(T) OT(Yi n O, t) _ 2]+1 (T) OT(Yi 4- O, t) 
a y  ay ' 

i = 1 ,  2 . . . .  , n - - l ,  t > 0 ,  

(4) 

(5) 

(6) 

where C z (T), ~J (T), f~, (y), q0 (t), q.  (t) are known functions. 

It is necessary to determine the layer thicknesses h~= Y~--Y~-I. i=  1, 2 .. . . .  n , which minimize the mass of the 
thermal insulation with consideration of  temperature limitations in the seams between the layers. Thus, it is necessary to 
find the minimum of the function 

lz 

M ( h ) =  ~ p~h i (7) 
i = l  

given Eqs. (1)-(6) and the limitations 
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T(Yi , '  ~ i ,)%Tma x, i =  1, 2 . . . . .  n, t > O ,  (8) 

h i > 0 ,  i = 1 ,  2 . . . .  , n, (9) 

where T ~ is the maximum admissible temperature in the interlayer seams. max 

The introduct ion of a penalty function transforms the original problem of  finding the minimum of Eq. (7) with 
limitations in the form of inequality (8) to a sequence of minimization problems without limitations. Such an approach 
permits us to evaluate the role of  the limitations and to use methods developed for solution of  classical optimization 
Problems without limitations. Of course there are difficulties in using penalty functions. In particular, the search problem 
is greatly complicated by the fact that the second derivatives of the penalty functions are discontinuous on the boundary 
of the admissible region, with the size of the discontinuities increasing with increase in the penalty parameter. To avoid 
this difficulty we use for the penalty function the function [1] 

1 %  qs(/i, P, O) -- ~ - ~  r~(gz--O~) 2 , (10) 

where r v 0 i are penalty parameters; gi ~ 0 are limitation functions; 

i f ,  ~' f < o ,  
f _ = m i n ( f ,  o) = [o, if f ~ o .  

At sufficiently high values of  the parameters r i the iteration process 

0 }+~  '~ �9 ~ (1  I )  = O i - - m m ( g , : ,  0)), i = l ,  2 . . . . .  n, 

ensures convergence of g~ to zero at a geometric progression rate [ 1 ]. If  the convergence rate is too slow, the possibility 
of increasing the parameters r i has been provided. Since the parameters r~ remain limited and the parameters 0~ are varied, 
the surfaces upon which the second derivatives are discontinuous are removed from the solution, and the values of  the 
discontinuities are finite. 

Thus, the problem of conditional minimization is reduced to a sequence of  unconditional minimization problems 
for the transformed function 

p (~: ? ,  6~) = M (?01+ r 7 ~, oh. (!2) 

In determining the gradient of  Eq. (12) calculation of the gradient of  the target function (7) presents no difficulties, 
and a formula can be obtained for the gradient of  penalty function (10) on the basis of  a solution of the boundary problem 
conjugate to the heating problem. 

Introducing for each i-th layer the dimensionless variable ~ = (y - Yi_l)/hi, we obtain the explicit dependence of 
conditions (1)-(6) upon the unknown parameters hi: 

OT' l 0 ( )](T) OT' ~ ( i3 )  
c' (r) ot - / , ]  ' 

0 < ~ < I ,  O<t<~tc,  i = 1 ,  2 . . . . .  n, (14) 

?J(r) OT,(O, i) =~o(t), t < 0 ,  (15) 
h I O~ 

--U~(T) OT"(1, O --q~(t), t > 0 ,  (16) 
h,  0~ 

Tf(1, t) = T~+i(0, t), i =  1, 2 . . . . .  n - - l ,  t > 0  

U (T) aT i (l ,  t) U +~ (T) OTi+I(O, t) 
Izi O~ hi+l O~ 

i-= 1, 2 . . . .  , n - - l ,  t>O,  

(17) 

(18) 

T. i T i(1, t ) -~  max, i =  1, 2 . . . . .  n. (19) 
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For the limitation functions gi we use functions of the form 

l !ev# _ T ~ gi = .1 ~-max (1, t)l_dt, i =  l, 2 . . . . .  n .  (20) 
0 

Considering the layer thicknesses h i as control parameters which minimize Eq. (10), following [2], we can write the 
conditions of the problem conjugate to Eqs. (13)-(18): 

= ~ (Ai**)-- W (Bi~i) + D~*~ ' (21) 

where 

[ 0~ i+' (o, i )  

0 < [ < 1 ,  O ~ t < t  e, i = l ,  2 . . . . .  n, 

q/(~, te)=O, O ~ g % l ,  i = l ,  2 . . . . .  n, 

[ l o 0~, ~(0, t) A ~(0, t) B ~(0, r **(0, t) + ~ [ A  ~(0, t),~(0, t ) l=0 ,  t < t e ,  
og ~, (o, 0 

[ Okn(1, t) A"(1, t) Bn ] ~n 
o~ x" (l, t) (l, t) (1, t) 

0 + - ~ -  tAn(l, /) tp"(l, t)l = - -  r ,  (g~ - -  O,,)_, t < t e ,  

hl A i (l, t) ~(1, t) = hi+i Ai+l(0, t) ~i+l(0, t) , 
~(1,  t) ~ i§  o, 0 

i = 1 ,  2, . . . ,  n - - l ,  t < t  c, 

OLi(1, t)Ai(1, t) Bi(1, t)]@~(1, t ) +  --~-0 [Ae(1, t) , '(1, /)l -- 

A~+' (O, t) Bi+, (O, t)J ,~+, (O, t) 0 [ . ~/+~ (0, t) - -  ~ -  A'+l (0, t) ~+ t  (0, t)l = - -  r~ (g, - -  03_ ,  

i = l ,  2, . . . ,  n - - l ,  t < t e ,  

A ~ (~, t) = ~ (~, t)/[C ~ (~, t) h~ l; 

2 0~/(~, t). 

Di(~ ' t)=[Oz~/(~,O~ z t) OCi(~,Ot t )h~ l / [Ci (~  ' t) h~],  

(22) 

(23) 

(24) 

(25) 

(26) 

and also a formula for calculating the gradient [3] of the penalty function 

0r  = i c A  i (O , t )~ (O ,  t) OT ~(O,t) d t - -  
Oh~ hi O~ 

o 

- -  , h~ O~ qi (t) dt + ,~ E i (~, t) ~i (~, t) d~dt, i = 1, 2 . . . . .  n , 
0 o 0 

(27) 

where 

E i(~, t ) - -  2 OT i(~, t )  . 
hi Ot 

The coefficients appearing in the conditions of the conjugate boundary problem Eqs. (21)-(26) and in the gradient 
formula Eq. (27) are determined by solution of the heating problem Eqs. (13)-(18). 

The local minimum of the transformed Eq. (12) at fixed values of the parameters r k and b -k is sought by the method 
of conjugate gradients with the following formulas [41: 

~l+1 = l z l - - a H ,  l = 0 ,  1, 2 . . . . .  (28) 
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TABLE 1. 
Layer Wall 

Wall 
parameter 

c t 
c ~ 
9~ 
P.z 

T~( 1, /)max 
Te(l, t)max 

ht 
h~ 

Effect of Thermophysical Characteristics on Mass of  Two- 

Reference solution ~ ~ Optimization ~ result 

1 

1 

1 

1 

1 

1 

0,9585 
0,8337 
0,5000 
0,5000 
1,000 

1 

1 

I 

I 

1 

I 

0,9378 
0,8337 
0,5432 
0,4568 
1,000 

1 

1 

1 

1 

1 

0,5 
0,9585 
0,7278 
0,3854 
0, 7133 
0,7421 

0,5 
1 

1 

1 

1 

0,5 
0,9127 
0,8337 
0,5403 
0.3837 
0,7322 

where 

Sf = - -  P~ + [3~S l-~ , Pl = (Pl_--, Pt-i_,, Pl) , P0 = 0; 
(Pz-I , P~-~ ) 

Pt is the gradient of  the transformed Eq. (12), calculated by use of  Eq. (27). 

The coefficient o~t, which determines the value of  the step along the chosen direction ~ upon transition from ht to 
h)+ z, is found from the condition 

rain pk (tz: - -  ~/S t ,r k, 0u). 
c~ 

The procedure for dete _rrnination of  ~t is simplified significantly if in evaluating the change in the penalty function Eq. (i 0) 
in the chosen direction S t we use the solution of  the boundary problem for temperature variations 5T ~ (~, t), i = 
1, 2, ..., n. The conditions for this problem, in analogy to [2], are written in the form: 

9 i 

O(6T i) Ai(~, O-(6T) B i O(6Ti) -pDi(~, I)6T i + Ei(~, t)S~ 0 < ~ < I ,  

(29) 

t > 0 ,  i = l ,  2 . . . .  , n, 

6T'(~, 0 ) = 0 ,  0 ~ I ,  i = ' l ,  2, , . . ,  n, (30) 

0~, ~ (0, t) 5TJ - -  ~,~ (0, t) 0 (6T a (0, t)) _ q0 (t) S~, t > 0, (31) 
a~ a~ 

o~"(1, t) o~ 6Tn(l., t ) - -  %"(I, i) 0(6T~(I'o~ t)) =q~(t)S~, t>O, (32) 

6T i (1, t) = 5T i+J (0, 

0 (ST Z (1, t)) 1 -~ t ) ~ r ' ( l ,  t ) +  %'(1, t) 
h,+~ L--3-U- o~ 

• 5T I+1 (0, t)-1-)]+1 (0, t) O(6Ti+l(O' t)) 
o~ 

where S i is the change in thickness of  the i-th layer. 

t), i =  1, 2 . . . . .  n - - l ,  t > 0 ,  (33) 

Ni(1, t) OT ~(1, t) ] [ 0% i+1(0, t) 
h~ 0g S~j ---- hi [ 0~ • (34) 

;~i+, (0, t) OT z+' (0, t) ] 
hi+ t 0~ Si+t J ' 

Numerical calculations were performed for a number of  examples by the method described. In doing this, the 
boundary problems of  Eqs. (13)-(18), (21)-(26), (29)-(34) were solved using implicit difference methods. 

Table 1 presents the results of the solution for the case of  a two-layer wall with thermophysical characteristics 
independent of  temperature and the following initial data: n =  2; qo(t)= l; q~(t)=0; tk=l;qc~(g) =0;  i=  1,2. The admissible 
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temperature values for the calculation were obtained by solving the thermal conductivity problew at known layer thickness 
(h 1 = h 2 = 0.5) [5]: 

T~nax= 0.9585, T~nax= 0.8337. 

The iteration process was begun at initial layer thicknesses hlo = h2o = 0.05 and concluded upon fulfillment of the condition 

[Mk-- Mk-'[ ~ M k. 10-~. 

Analysis of the calculations performed permits the conclusion that the method is an effective one, providing a significant 
reduction in computation time for both the gradient of the function P(h, r ,  0) and for determination of the step value in 
the chosen direction. 

NOTATION 

M(h-), target function; hi, thickness of the i-th layer; Pi, density of material in i-th layer; n, number of layers of 
thermal insulation; y, spatial coordinate; t, time; Yi, i = 0, 1, 2, ..., n, coordinates of layer boundaries; Ci(T), volume heat 
capacity of material in i-th layer; hi(T), thermal conductivity coefficient of material in i-th layer; r initial temperature 
distribution; q, thermal flux; tc, right-hand value of time interval; T i i = 1 2, n, maximum admissible temperatures on 

i-th boundary; �9 (h, r ,  0), penalty function; r ,  0, penalty parameters; gi, function considering temperature limitations; 

P(h, r ,  0), transformed function; k, number of successive unconditional minimization problem; l, number of iteration in 
search for local minimum; cr •, S, parameters of conjugate gradient method. 

1. 
2. 

3. 
4 
5. 
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